[“x- | [“x+ | [“x- | [“x-- | ‘¬“x+ | ‘¬“x- | ‹@“®+ | |||
---|---|---|---|---|---|---|---|---|---|
’âŽ~ | [“x+ | [“x- | ‘¬“x+ | ‘¬“x- | ‹@“®+ | ‹@“®- | [“x+ ‘¬“x- | ‘¬“x+ ‹@“®- | ‹@“®+ [“x- |
[“x+ | ’âŽ~ | [“x+ | [“x++ | [“x- | ‘¬“x- | ‹@“®+ | ‹@“®- | ||
‘¬“x- | ’âŽ~ | [“x+ | ‘¬“x+ | ‘¬“x- | ‘¬“x-- | ‹@“®+ | ‹@“®- | [“x+ ‘¬“x- | |
‹@“®- | ’âŽ~ | [“x+ | [“x- | ‘¬“x+ | ‹@“®+ | ‹@“®- | ‹@“®-- | ||
‹@“®+ | [“x- | ‘¬“x+ | ‘¬“x- | ‹@“®+ | ‹@“®++ | ‹@“®- | |||
‹@“®++ | [“x- | ‘¬“x- | ‹@“®+ | ‹@“®++ | ‹@“®+ [“x- | ||||
‹@“®+ [“x- | ’âŽ~ | [“x-- | ‹@“®++ | ‹@“®+ [“x- | |||||
‘¬“x+ | ’âŽ~ | [“x+ | [“x- | ‘¬“x+ | ‘¬“x++ | ‘¬“x- | ‹@“®- | ||
ƒV[ƒ‹ƒhMAX | ’âŽ~ | [“x+ | [“x- | ‘¬“x+ | ‘¬“x- | ‹@“®+ | ‹@“®- | ||
‘¬“x++ | [“x- | ‘¬“x+ | ‘¬“x++ | ‹@“®- | ‘¬“x+ ‹@“®- | ||||
ƒV[ƒ‹ƒhOFF | ’âŽ~ | [“x+ | [“x- | ‘¬“x+ | ‘¬“x- | ‹@“®+ | ‹@“®- |
•‚ã„q | ös„q | –³‰¹•‚ã | –³‰¹ös |
‘¬“x20« | ‘¬“x20« | ƒV[ƒ‹ƒhOFF | ƒV[ƒ‹ƒhOFF |
’âŽ~ | –³‰¹•‚ã (?,?,?) | ’Êí•‚ã (0,-4,-1) | –³‰¹ös (?,?,?) | ’Êíös (0,+3,0) | ‘‘¬ŠJŽn (0,0,+1) | Œ¸‘¬ (0,0,-2) | •‚ã„q (0,-2,-2) | ös„q (0,+2,+2) |
---|---|---|---|---|---|---|---|---|
ù‰ñ (+1,0,0) | [“x+ (0.+2,0) | [“x- (0,-3,0) | ‘¬“x+ (0,0,+2) | ‘¬“x- (0,0,-2) | ‹@“®+ (+2,0,0) | ‹@“®- (-3,0,0) | [“x+ ‘¬“x- (0,+1,-2) | |
‘¬“x+ ‹@“®- (-2,0,+1) | ‹@“®+ [“x- (+1,-2,0) | |||||||
’Êí•‚ã (0,-4,-1) | ’âŽ~ | –³‰¹•‚ã (?,?,?) ƒV[ƒ‹ƒhOFF? | ’Êí•‚ã (0,-4,-1) | ‹}‘¬•‚ã (0,-6,-2) | ‘‘¬ŠJŽn (0,0,+1) | ‘‘¬ (-1,0,+3) | Œ¸‘¬ (0,0,-2) | Œ¸‘¬Œp‘± (+1,0,-4) |
•‚ã„q (0,-2,-2) | ös„q (0,+2,+2) | ù‰ñ (+1,0,0) | ‹}ù‰ñ (+3,0,-1) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | ||
‹}‘¬•‚ã (0,-6,-2) | ’Êí•‚ã (0,-4,-1) | ‹}‘¬•‚ã (0,-6,-2) | ƒV[ƒ‹ƒh㸠(+1,-8,-3) | ‘‘¬ŠJŽn (0,0,+1) | ‘‘¬ (-1,0,+3) | ƒV[ƒ‹ƒhƒ_ƒbƒVƒ… (-2,0,+6) | Œ¸‘¬ (0,0,-2) | Œ¸‘¬Œp‘± (+1,0,-4) |
‘匸‘¬ (+2,0,-6) | •‚ã„q (0,-2,-2) | ù‰ñ (+1,0,0) | ‹}ù‰ñ (+3,0,-1) | ‚’¼ù‰ñ (+6,0,-2) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | |
ƒV[ƒ‹ƒh㸠(+1,-8,-3) | ‘‘¬ (-1,0,+3) | ƒV[ƒ‹ƒhƒ_ƒbƒVƒ… (-2,0,+6) | Œ¸‘¬Œp‘± (+1,0,-4) | ‘匸‘¬ (+2,0,-6) | ‹}ù‰ñ (+3,0,-1) | ‚’¼ù‰ñ (+6,0,-2) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) |
[“x- (0,-3,0) | [“x-- (0,-5,0) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | ||||||
’Êíös (0,+3,0) | ’âŽ~ | –³‰¹ös (?,?,?) | ’Êíös (0,+3,0) | ‹}‘¬ös (0,+5,+1) | ‘‘¬ŠJŽn (0,0,+1) | ‘‘¬ (-1,0,+3) | Œ¸‘¬ (0,0,-2) | Œ¸‘¬Œp‘± (+1,0,-4) |
•‚ã„q (0,-2,-2) | ös„q (0,+2,+2) | ù‰ñ (+1,0,0) | ‹}ù‰ñ (+3,0,-1) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | ||
‹}‘¬ös (0,+5,+1) | ’Êí•‚ã (0,-4,-1) | ‹}‘¬•‚ã (0,-6,-2) | ƒV[ƒ‹ƒh㸠(+1,-8,-3) | ’Êíös (0,+3,0) | ‹}‘¬ös (0,+5,+1) | ƒV[ƒ‹ƒhƒ_ƒCƒu (-1,+7,+3) | ‘‘¬ŠJŽn (0,0,+1) | ‘‘¬ (-1,0,+3) |
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ… (-2,0,+6) | Œ¸‘¬ (0,0,-2) | Œ¸‘¬Œp‘± (+1,0,-4) | ‘匸‘¬ (+2,0,-6) | •‚ã„q (0,-2,-2) | ù‰ñ (+1,0,0) | ‹}ù‰ñ (+3,0,-1) | ‚’¼ù‰ñ (+6,0,-2) | |
ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | ||||||
ƒV[ƒ‹ƒhƒ_ƒCƒu (-1,+7,+3) | ‹}‘¬•‚ã (0,-6,-2) | ƒV[ƒ‹ƒh㸠(+1,-8,-3) | ‹}‘¬ös (0,+5,+1) | ƒV[ƒ‹ƒhƒ_ƒCƒu (-1,+7,+3) | ‘匸‘¬ (+2,0,-6) | ‹}ù‰ñ (+3,0,-1) | ‚’¼ù‰ñ (+6,0,-2) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) |
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | [“x+ (0.+2,0) | [“x++ (0.+4,0) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | |||||
‘‘¬ŠJŽn (0,0,+1) | ’âŽ~ | –³‰¹•‚ã (?,?,?) | ’Êí•‚ã (0,-4,-1) | ‹}‘¬•‚ã (0,-6,-2) | –³‰¹ös (?,?,?) | ’Êíös (0,+3,0) | ‹}‘¬ös (0,+5,+1) | ‘‘¬ŠJŽn (0,0,+1) |
‘‘¬ (-1,0,+3) | •‚ã„q (0,-2,-2) | ös„q (0,+2,+2) | ù‰ñ (+1,0,0) | ‹}ù‰ñ (+3,0,-1) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | |
‘‘¬ (-1,0,+3) | ’Êí•‚ã (0,-4,-1) | ‹}‘¬•‚ã (0,-6,-2) | ƒV[ƒ‹ƒh㸠(+1,-8,-3) | ’Êíös (0,+3,0) | ‹}‘¬ös (0,+5,+1) | ƒV[ƒ‹ƒhƒ_ƒCƒu (-1,+7,+3) | ‘‘¬ŠJŽn (0,0,+1) | ‘‘¬ (-1,0,+3) |
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ… (-2,0,+6) | •‚ã„q (0,-2,-2) | ös„q (0,+2,+2) | ù‰ñ (+1,0,0) | ‹}ù‰ñ (+3,0,-1) | ‚’¼ù‰ñ (+6,0,-2) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | |
ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | ||||||||
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ… (-2,0,+6) | ‹}‘¬•‚ã (0,-6,-2) | ƒV[ƒ‹ƒh㸠(+1,-8,-3) | ‹}‘¬ös (0,+5,+1) | ƒV[ƒ‹ƒhƒ_ƒCƒu (-1,+7,+3) | ‘‘¬ (-1,0,+3) | ƒV[ƒ‹ƒhƒ_ƒbƒVƒ… (-2,0,+6) | ‹}ù‰ñ (+3,0,-1) | ‚’¼ù‰ñ (+6,0,-2) |
ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | ‘¬“x+ (0,0,+2) | ‘¬“x++ (0,0,+4) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | ||||
Œ¸‘¬ (0,0,-2) | ’âŽ~ | –³‰¹•‚ã (?,?,?) | ’Êí•‚ã (0,-4,-1) | ‹}‘¬•‚ã (0,-6,-2) | –³‰¹ös (?,?,?) | ’Êíös (0,+3,0) | ‹}‘¬ös (0,+5,+1) | Œ¸‘¬ (0,0,-2) |
Œ¸‘¬Œp‘± (+1,0,-4) | •‚ã„q (0,-2,-2) | ös„q (0,+2,+2) | ù‰ñ (+1,0,0) | ‹}ù‰ñ (+3,0,-1) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | |
Œ¸‘¬Œp‘± (+1,0,-4) | ’Êí•‚ã (0,-4,-1) | ‹}‘¬•‚ã (0,-6,-2) | ƒV[ƒ‹ƒh㸠(+1,-8,-3) | ’Êíös (0,+3,0) | ‹}‘¬ös (0,+5,+1) | ƒV[ƒ‹ƒhƒ_ƒCƒu (-1,+7,+3) | Œ¸‘¬ (0,0,-2) | Œ¸‘¬Œp‘± (+1,0,-4) |
‘匸‘¬ (+2,0,-6) | •‚ã„q (0,-2,-2) | ös„q (0,+2,+2) | ù‰ñ (+1,0,0) | ‹}ù‰ñ (+3,0,-1) | ‚’¼ù‰ñ (+6,0,-2) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | |
ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | ||||||||
‘匸‘¬ (+2,0,-6) | ‹}‘¬•‚ã (0,-6,-2) | ƒV[ƒ‹ƒh㸠(+1,-8,-3) | ‹}‘¬ös (0,+5,+1) | ƒV[ƒ‹ƒhƒ_ƒCƒu (-1,+7,+3) | Œ¸‘¬Œp‘± (+1,0,-4) | ‘匸‘¬ (+2,0,-6) | ‹}ù‰ñ (+3,0,-1) | ‚’¼ù‰ñ (+6,0,-2) |
‚’¼ù‰ñ (+6,0,-2) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | ‘¬“x- (0,0,-3) | ‘¬“x-- (0,0,-5) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | |||
ös„q (0,+2,+2) | ’âŽ~ | –³‰¹•‚ã (?,?,?) | ’Êí•‚ã (0,-4,-1) | ‹}‘¬•‚ã (0,-6,-2) | –³‰¹ös (?,?,?) | ’Êíös (0,+3,0) | ‹}‘¬ös (0,+5,+1) | ‘‘¬ŠJŽn (0,0,+1) |
‘‘¬ (-1,0,+3) | Œ¸‘¬ (0,0,-2) | Œ¸‘¬Œp‘± (+1,0,-4) | •‚ã„q (0,-2,-2) | ös„q (0,+2,+2) | ù‰ñ (+1,0,0) | ‹}ù‰ñ (+3,0,-1) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | |
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | |||||||
ù‰ñ (+1,0,0) | ’âŽ~ | –³‰¹•‚ã (?,?,?) | ’Êí•‚ã (0,-4,-1) | ‹}‘¬•‚ã (0,-6,-2) | –³‰¹ös (?,?,?) | ’Êíös (0,+3,0) | ‹}‘¬ös (0,+5,+1) | ‘‘¬ŠJŽn (0,0,+1) |
‘‘¬ (-1,0,+3) | Œ¸‘¬ (0,0,-2) | Œ¸‘¬Œp‘± (+1,0,-4) | •‚ã„q (0,-2,-2) | ös„q (0,+2,+2) | ù‰ñ (+1,0,0) | ‹}ù‰ñ (+3,0,-1) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | |
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | |||||||
‹}ù‰ñ (+3,0,-1) | ’Êí•‚ã (0,-4,-1) | ‹}‘¬•‚ã (0,-6,-2) | ƒV[ƒ‹ƒh㸠(+1,-8,-3) | ’Êíös (0,+3,0) | ‹}‘¬ös (0,+5,+1) | ƒV[ƒ‹ƒhƒ_ƒCƒu (-1,+7,+3) | ‘‘¬ŠJŽn (0,0,+1) | ‘‘¬ (-1,0,+3) |
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ… (-2,0,+6) | Œ¸‘¬ (0,0,-2) | Œ¸‘¬Œp‘± (+1,0,-4) | ‘匸‘¬ (+2,0,-6) | •‚ã„q (0,-2,-2) | ös„q (0,+2,+2) | ù‰ñ (+1,0,0) | ‹}ù‰ñ (+3,0,-1) | |
ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | ||||||
‚’¼ù‰ñ (+6,0,-2) | ‹}‘¬•‚ã (0,-6,-2) | ƒV[ƒ‹ƒh㸠(+1,-8,-3) | ‹}‘¬ös (0,+5,+1) | ƒV[ƒ‹ƒhƒ_ƒCƒu (-1,+7,+3) | ‘‘¬ (-1,0,+3) | ƒV[ƒ‹ƒhƒ_ƒbƒVƒ… (-2,0,+6) | Œ¸‘¬Œp‘± (+1,0,-4) | ‘匸‘¬ (+2,0,-6) |
‹}ù‰ñ (+3,0,-1) | ‚’¼ù‰ñ (+6,0,-2) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | ‹@“®+ (+2,0,0) | ‹@“®++ (+4,0,0) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | ||
ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ’Êí•‚ã (0,-4,-1) | ‹}‘¬•‚ã (0,-6,-2) | ƒV[ƒ‹ƒh㸠(+1,-8,-3) | ’Êíös (0,+3,0) | ‹}‘¬ös (0,+5,+1) | ƒV[ƒ‹ƒhƒ_ƒCƒu (-1,+7,+3) | ‘‘¬ŠJŽn (0,0,+1) | ‘‘¬ (-1,0,+3) |
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ… (-2,0,+6) | Œ¸‘¬ (0,0,-2) | Œ¸‘¬Œp‘± (+1,0,-4) | ‘匸‘¬ (+2,0,-6) | •‚ã„q (0,-2,-2) | ös„q (0,+2,+2) | ù‰ñ (+1,0,0) | ‹}ù‰ñ (+3,0,-1) | |
‚’¼ù‰ñ (+6,0,-2) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | |||||
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | ’Êí•‚ã (0,-4,-1) | ‹}‘¬•‚ã (0,-6,-2) | ƒV[ƒ‹ƒh㸠(+1,-8,-3) | ’Êíös (0,+3,0) | ‹}‘¬ös (0,+5,+1) | ƒV[ƒ‹ƒhƒ_ƒCƒu (-1,+7,+3) | ‘‘¬ŠJŽn (0,0,+1) | ‘‘¬ (-1,0,+3) |
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ… (-2,0,+6) | Œ¸‘¬ (0,0,-2) | Œ¸‘¬Œp‘± (+1,0,-4) | ‘匸‘¬ (+2,0,-6) | •‚ã„q (0,-2,-2) | ös„q (0,+2,+2) | ù‰ñ (+1,0,0) | ‹}ù‰ñ (+3,0,-1) | |
‚’¼ù‰ñ (+6,0,-2) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | |||||
ƒV[ƒ‹ƒhMAX | ’âŽ~ | –³‰¹•‚ã (?,?,?) | ’Êí•‚ã (0,-4,-1) | ‹}‘¬•‚ã (0,-6,-2) | –³‰¹ös (?,?,?) | ’Êíös (0,+3,0) | ‹}‘¬ös (0,+5,+1) | ‘‘¬ŠJŽn (0,0,+1) |
‘‘¬ (-1,0,+3) | Œ¸‘¬ (0,0,-2) | Œ¸‘¬Œp‘± (+1,0,-4) | •‚ã„q (0,-2,-2) | ös„q (0,+2,+2) | ù‰ñ (+1,0,0) | ‹}ù‰ñ (+3,0,-1) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | |
ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | [“x+ (0.+2,0) | [“x- (0,-3,0) | ‘¬“x+ (0,0,+2) | ‘¬“x- (0,0,-2) | ‹@“®+ (+2,0,0) | ‹@“®- (-3,0,0) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | |
ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | ’Êí•‚ã (0,-4,-1) | ‹}‘¬•‚ã (0,-6,-2) | ƒV[ƒ‹ƒh㸠(+1,-8,-3) | ’Êíös (0,+3,0) | ‹}‘¬ös (0,+5,+1) | ƒV[ƒ‹ƒhƒ_ƒCƒu (-1,+7,+3) | ‘‘¬ŠJŽn (0,0,+1) | ‘‘¬ (-1,0,+3) |
ƒV[ƒ‹ƒhƒ_ƒbƒVƒ… (-2,0,+6) | Œ¸‘¬ (0,0,-2) | Œ¸‘¬Œp‘± (+1,0,-4) | ‘匸‘¬ (+2,0,-6) | •‚ã„q (0,-2,-2) | ös„q (0,+2,+2) | ù‰ñ (+1,0,0) | ‹}ù‰ñ (+3,0,-1) | |
‚’¼ù‰ñ (+6,0,-2) | ƒoƒŒƒ‹ƒ[ƒ‹ (+3,+2,+2) | ƒCƒ“ƒƒ‹ƒ}ƒ“ù‰ñ (-4,-3,-3) | [“x+ (0.+2,0) | [“x- (0,-3,0) | ‘¬“x+ (0,0,+2) | ‘¬“x- (0,0,-2) | ‹@“®+ (+2,0,0) | |
‹@“®- (-3,0,0) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | |||||||
‘¬“x+ (0,0,+2) | [“x+ (0.+2,0) | [“x- (0,-3,0) | ‘¬“x+ (0,0,+2) | ‘¬“x++ (0,0,+4) | ‘¬“x- (0,0,-2) | ‹@“®- (-3,0,0) | ||
‘¬“x++ (0,0,+4) | [“x- (0,-3,0) | ‘¬“x+ (0,0,+2) | ‘¬“x++ (0,0,+4) | ‹@“®- (-3,0,0) | ‘¬“x+ ‹@“®- (-2,0,+1) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | ||
‹@“®+ (+2,0,0) | ’âŽ~ | [“x- (0,-3,0) | ‘¬“x+ (0,0,+2) | ‘¬“x- (0,0,-2) | ‹@“®+ (+2,0,0) | ‹@“®++ (+4,0,0) | ‹@“®- (-3,0,0) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) |
‹@“®++ (+4,0,0) | [“x- (0,-3,0) | ‘¬“x- (0,0,-2) | ‹@“®+ (+2,0,0) | ‹@“®++ (+4,0,0) | ‹@“®+ [“x- (+1,-2,0) | |||
‹@“®- (-3,0,0) | ’âŽ~ | [“x+ (0.+2,0) | [“x- (0,-3,0) | ‘¬“x+ (0,0,+2) | ‹@“®- (-3,0,0) | ‹@“®-- (-5,0,0) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | |
‹@“®-- (-5,0,0) | [“x+ (0.+2,0) | ‘¬“x+ (0,0,+2) | ‹@“®- (-3,0,0) | ‹@“®-- (-5,0,0) | ‘¬“x+ ‹@“®- (-2,0,+1) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | ||
[“x+ (0.+2,0) | ’âŽ~ | [“x+ (0.+2,0) | [“x++ (0.+4,0) | [“x- (0,-3,0) | ‘¬“x- (0,0,-2) | ‹@“®+ (+2,0,0) | ‹@“®- (-3,0,0) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) |
[“x++ (0.+4,0) | [“x+ (0.+2,0) | [“x++ (0.+4,0) | ‘¬“x- (0,0,-2) | ‹@“®- (-3,0,0) | [“x+ ‘¬“x- (0,+1,-2) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | ||
[“x- (0,-3,0) | ’âŽ~ | [“x+ (0.+2,0) | [“x- (0,-3,0) | [“x-- (0,-5,0) | ‘¬“x+ (0,0,+2) | ‘¬“x- (0,0,-2) | ‹@“®+ (+2,0,0) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) |
[“x-- (0,-5,0) | [“x- (0,-3,0) | [“x-- (0,-5,0) | ‘¬“x+ (0,0,+2) | ‹@“®+ (+2,0,0) | ‹@“®+ [“x- (+1,-2,0) | ƒV[ƒ‹ƒhƒ^[ƒ“ (+5,0,-5) | ||